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An end-grafted flexible polymer chain in three-dimensional space between two pistons undergoes an abrupt
transition from a confined coil to a flowerlike conformation when the number of monomers in the chain, N,
reaches a critical value. In two-dimensional �2D� geometry, excluded-volume interactions between monomers
of a chain confined inside a strip of finite length 2L transform the coil conformation into a linear string of
blobs. However, the blob picture raises questions about the nature of this escape transition. To check theoretical
predictions based on the blob picture we study 2D single-polymer chains with excluded-volume interactions
and with one end grafted in the middle of a strip of length 2L and width H by simulating self-avoiding walks
on a square lattice with the pruned-enriched Rosenbluth method. We estimate the free energy, the end-to-end
distance, the number of imprisoned monomers, the order parameter, and its distribution. It is shown that in the
thermodynamic limit of large N and L but finite L /N, there is a small but finite jump in several average
characteristics, including the order parameter. We also present a theoretical description based on the Landau
free energy approach, which is in good agreement with the simulation results. Both simulation results and the
analytical theory indicate that the 2D escape transition is a weak first-order phase transition.
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I. INTRODUCTION

A phenomenon called an escape transition occurs upon
progressive squeezing an end-grafted polymer chain between
two pistons and has attracted great interest �1–16�. At weak
deformation the chain is compressed uniformly into a rela-
tively thick pancake conformation. Beyond a certain critical
compression, the chain configuration changes abruptly. One
part of the chain forms a stem stretching from the grafting
point to the piston edge, while the rest of the segments form
a coiled crown outside the piston, thus escaping from the
region underneath the piston. An abrupt change from one
state to another implies a first-order transition. Various as-
pects of this problem were investigated: The escape transi-
tion of compressed polymer mushrooms in three-
dimensional space was investigated thoroughly by scaling
theory �1�, numerical calculations �2–4�, and computer mod-
eling under good solvent �5� and � solvent �6� conditions.
The escape transition of star polymers was discussed in �7�,
and the escape transition of diblock copolymers was consid-
ered in �8�. The influence of the curvature of the pistons was
investigated in �9,10�, and the effect of adsorption between
the polymer chain and the surface of the piston was consid-
ered in �11�. A comparison between Monte Carlo simulations
and experimental results by atomic-force electrochemical
microscopy was recently presented in �12�. A rigorous ana-
lytical theory for the equilibrium and kinetic aspects of the
escape transition for a Gaussian chain was constructed in
�13,14�. Metastability effects, negative compressibility, and
the nonequivalence of the escape transition in two conjugate
ensembles were analyzed for the same model in �15,16�.

The reason for studying the escape transition is that it
gives the possibility to understand the phenomenon of a very

unconventional phase transition. The concept of a phase tran-
sition requires taking a thermodynamic limit. For standard
low-molecular-weight systems, as well as for macromolecu-
lar systems in condensed bulk matter, finite-size effects are
usually negligible. In contrast to that, phase transitions at the
level of a single macromolecule—e.g., the coil-globule tran-
sition �17� or polymer adsorption at an interface �18,19�—do
not have any analogies in the physics of low-molecular-mass
systems. A single macromolecule always consists of a finite
number of monomers, N: computer modeling rarely deals
with N larger than 104 so that finite-size effects in single-
molecule phase transitions are the rule rather than the excep-
tion. The situation is much more complicated in the case of
the escape transition. It was shown �1� that the escape tran-
sition point �critical compression� depends on the relation
between the chain length Na �a is the distance between
neighboring monomers� and the piston radius L. Therefore,
to analyze the escape transition in the thermodynamic limit,
it is necessary to take both Na→� and L→� but Na /L
=const.

The physics of phase transitions is generally known to be
strongly affected by the spatial dimensionality. For phase
transitions at the level of a single macromolecule the spatial
dimensionality is important because excluded-volume effects
are especially large for polymeric chains in two dimensions
�20�. An ideal chain without excluded volume interactions
retains a Gaussian coil conformation with the lateral size
�N1/2 even when it is confined in a two-dimensional �2D�
strip. There is a very pronounced difference between this
state and the partially escaped state with a strongly stretched
stem of size L�Na. On the contrary, a 2D polymer chain
with excluded-volume interactions confined in a strip is al-
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ready strongly elongated with the size �Na. It is not clear
whether the difference between the confined and escaped
states is large enough to result in a phase transition.

To analyze the excluded-volume effects of the escape
transition, we study a flexible polymer chain containing N
links of length a �N monomers� grafted in the middle of a
strip of length 2L and width H, under good solvent condi-
tions. Schematic drawings of a polymer chain in an impris-
oned state and in an escaped state are shown in Fig. 1. First,
we summarize the results of the escape transition for a 2D
Gaussian ideal chain in Sec. II, and then we give theoretical
predictions based on the blob picture in Sec. III. In an ex-
perimental setup, the escape transition is driven by changing
the piston separation H, while in a blob picture, the escape
transition is studied by changing the chain length N or the
strip length L at fixed H which is also the size of a blob.
Comparisons between the escape transition behavior of the
Gaussian chain model and that of the blob model in the
thermodynamic limit are given in Sec. IV. In Sec. V we
present our results from Monte Carlo �MC� simulations with
the pruned-enriched Rosenbluth method �PERM� �21� In
Sec. VI we provide a theoretical description based on the
Landau free energy approach which is compared with MC
results. A summary and discussions are given in Sec. VII.
Detailed analyses of the variances of the imprisoned mono-
mers are given in the Appendix.

II. ESCAPE FOR A 2D GAUSSIAN CHAIN

For the escape transition of a Gaussian chain, a closed
form of the exact partition function was obtained earlier in
�14�. The asymptotic form of the free energy F has two
branches:

F = �N
1

2d
��a

H
�2

= Fimp imprisoned state,

�L

H
= Fesc escaped state. 	 �1�

Here d is the dimensionality of space and a factor of kBT is
absorbed in the free energy throughout the paper. It was

shown by direct numerical comparison that the simple
asymptotic expressions provide a very accurate description.
The two branches meet at the transition point which is given
by

� L

Na
�**

=
�

2d

a

H
, with d = 2. �2�

The average lateral forces acting on the grafting point are
obtained by

fL =
�F�N,L,H�

�L
, �3�

which is related to the work required to pull a chain end into
the confined space by a unit distance. The average compres-
sion force

fH = −
�F�N,L,H�

�H
�4�

is related to the work of compression. It was shown earlier
�14� that the average fraction of imprisoned monomers is
given by the derivative Nimp=�F�N ,L ,H� /�u of the free en-
ergy with respect to the effective confining potential u
= ��a /2H�2.

The average end-to-end distance per monomer is

R

Na
= �N−1/2 imprisoned state,

L

Na
+ N−1/2�1 − Nimp/N�1/2 escaped state. 	

�5�

The Landau order parameter s for the escape transition was
introduced in �14� as a stretching degree of the chain rN /N
for the imprisoned state and as the stretching degree of the
stem L /nimp for the escaped state. Note that the order param-
eter is defined for an instantaneous configuration with a
given end-to-end distance rN and the number of imprisoned
monomers nimp which may be quite different from the equi-
librium average values R= 
rN� and Nimp= 
nimp�. The Landau
free energy is defined as a function of the order parameter.
The Landau free energy for the imprisoned state is just the
free energy of a coil as a function of its free end position,
which has a standard parabolic form:

�imp�s� = N�d

2
s2 +

1

2d
��a

H
�2 . �6�

At s=seq
imp=0, the system is in equilibrium and the corre-

sponding equilibrium free energy—i.e., the depth of the
minimum—is �imp�0�= �N /2d���a /H�2. For the escaped
state,

�esc�s� =
L

a
�d

2
s +

1

2d
��a

H
�21

s
 . �7�

The position of the minimum is at s=seq
esc=�a /dH, and the

corresponding depth is �esc�seq
esc�=�L /H. The binodal is de-

termined by the condition that the two minima be equally
deep—i.e., �imp�seq

imp�=�esc�seq
esc�, which leads to the transi-

tion point described by Eq. �2�. At the transition point, the

n "blobs"

H

b

L L

stem

L

crown

(a)

(b)

FIG. 1. Schematic drawings of a flexible polymer chain of
length N grafted in the middle of the strip of length 2L and width H,
in a blob picture: �a� As the chain is imprisoned inside the strip, it
forms a sequence of nb blobs. �b� As the chain length is larger than
the maximum chain length N* of a chain in an imprisoned state, the
chain partially escapes from the strip and forms an escaped state.
An escaped state consists of a “stem” containing N* monomers and
a “crown” containing N−N* monomers.
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average order parameter S= 
s� jumps from seq
imp to seq

esc. The
Landau function allows one to analyze metastable states and
to define the two lines where either one of the metastable
minima vanishes �16�. Theoretical predictions for the escape
transition of a Gaussian chain are summarized in Table I and
shown in Fig. 2. A detailed discussion and comparison with
the prediction from the blob picture for 2D polymer chains
are given in Sec. IV.

III. BLOB PICTURE OF A 2D ESCAPE

A free chain in d=2 has an average end-to-end distance
given by �a is the distance between neighboring monomers�
�17–20�

RF = aN3/4; �8�

here, the prefactors of order unity are neglected throughout.
Based on the blob picture we have a cigar of blobs �nb blobs
in total� in the confined situation. Thus, the average end-to-
end distance is

R = nb�2rb� = nbH , �9�

where rb is the blob radius. Within a blob, self-avoiding walk
�SAW� statistics holds, so if g monomers belong to a blob,

TABLE I. Theoretical predictions for the average values of the free energy per monomer F /N, the lateral
force fL, the compression force per monomer fH /N, the fraction of imprisoned monomers Nimp/N, the order
parameter S, and the reduced end-to-end distance R /Na based on the Gaussian chain model and the blob
picture.

Characteristics
of the chain

Imprisoned
state

Escaped
state

Gaussian Blob Gaussian Blob

F

N � �a

2H �2 � a

H �4/3 �

H

L

N

1

H

L

N

fL 0 0 �

H

1

H
fH

N

�2

2a � a

H �3 4

3a � a

H �7/3 �

H2

L

N
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N
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N
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FIG. 2. Theoretical predictions
for various averaged chain charac-
teristics plotted against L /N at
constant strip width H: �a� the free
energy per monomer F /N, �b� the
lateral force fL, �c� the compres-
sion force per monomer fH /N, �d�
the fraction of imprisoned mono-
mers Nimp/N, �e� the order param-
eter S, and �f� the end-to-end dis-
tance per monomer R /N.
Gaussian model results are shown
by dotted lines, blob model results
by solid lines. The chain is in an
imprisoned state for L

N
� � L

N
�**�� L

N
�*� and in an escaped

state for L
N � � L

N
�**�� L

N
�*� for the

Gaussian chain model �blob
picture�.
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H = ag3/4 = 2rb, g = �H/a�4/3. �10�

Since every monomer of a chain in an imprisoned state must
be in a blob, we furthermore have

N = gnb = nb�H/a�4/3, nb = N�H/a�−4/3. �11�

This yields, together with Eq. �9�, the formula for the end-
to-end distance:

R/a = N�H/a�−1/3. �12�

If H is of the same order as RF, Eq. �8�, one finds R /a
=N3/4, giving a smooth crossover to mushroom behavior, as
expected.

The free energy excess of the chain in an imprisoned state
�in units of kBT�, relative to an unconfined mushroom, is
simply the number of blobs, nb,

Fimp = nb = N�H/a�−4/3. �13�

We now define N=N* as the maximum chain length of an
imprisoned chain. Then for N�N* the chain consists of a
“stem” containing N* imprisoned monomers and an escaped
“crown” comprising the remaining N−N* monomers �Fig.
1�b��. Thus, we find N* from the condition that R become
equal to L at the transition point, using Eq. �12�:

N* = �L/a��H/a�1/3. �14�

Since the free energy of an unconfined mushroom is taken as
zero reference point, the “crown” does not contribute to the
excess free energy of the escaped chain, which is hence due
to the stem only:

Fesc = N*�H/a�−4/3 = L/H . �15�

The average end-to-end distance of the escaped chain �in the
axial direction parallel to the confining boundaries� hence
becomes

Resc = L + a�N − N*�3/4. �16�

Equations �13� and �15� show that the free energy as a func-
tion of N for fixed H and L consists of two branches: i.e.,
Fimp for the imprisoned state �N�N*� and Fesc for the es-
caped state �N�N*�, meeting at N=N*. The lateral and com-
pression forces are obtained from the free energy by using
Eqs. �3� and �4�. We use the same definition of the order
parameter s as that for the Gaussian chain, so the average
order parameter S,

S = 
s� = �R/Na imprisoned state,

L/N*a = �H/a�−1/3 escaped state.
� �17�

From Eqs. �12�, �14�, and �17�, we find that the order param-
eter does not show any discontinuity at the transition, but
simply stays constant—i.e., S= �H /a�−1/3. The results of the
theoretical predictions are listed in Table I and also shown in
Fig. 2.

IV. COMPARISON OF THE GAUSSIAN AND BLOB
PICTURES

In the thermodynamic limit N→�, L→�, L /N remains
as a nontrivial variable along with H. In Fig. 2, theoretical

predictions of the Gaussian chain model and of the blob
model are shown by dotted and solid lines, respectively. The
strip width H is fixed, and the ratio L /N is varied. The chain
is in an imprisoned state if L

N is larger than the corresponding
critical value, � L

N
�** for the Gaussian chain model or � L

N
�* for

the blob model, and in the escaped state for L
N � � L

N
�**�� L

N
�*�.

All curves show only the scaling behavior disregarding nu-
merical coefficients of order 1, and the bond length a is taken
as a unit length.

In both models, the free energy per monomer is given by
piecewise linear functions of L /N. For the escaped state, the
slope of F /N vs L /N is the same up to numerical coefficients
of order 1 and scales as H−1. This slope has the meaning of a
lateral force acting on the grafting point. It is proportional to
the inverse size of a blob which is defined purely by confine-
ment width H irrespective of whether excluded-volume in-
teractions are present or not. The free energy per monomer in
the imprisoned state is independent of L /N and scales as the
inverse number of monomers in one blob, g−1= �a /H�1/�,
where � is the Flory exponent. The transition points in the
two models may be quite far apart since they scale differ-
ently with H. In the setup where L /N is fixed and the piston
separation is decreasing, the blob model predicts the transi-
tion to happen at lower compression, as compared to the
Gaussian chain. In both models the lateral force jumps from
H−1 to zero at the respective transition point. As for compres-
sion forces, they are strongly affected by excluded-volume
interactions �Fig. 2�c��. The difference in the plateau values
for the imprisoned state reflects the lower compressibility of
the self-avoiding walk as compared to the Gaussian chain.
This corresponds directly to the plateau values of the free
energy in Fig. 2�a�. In the Gaussian chain model, the com-
pression force jumps at the transition point by a factor of 2,
while the jump in the blob model is by a factor of 4 /3.

Figures 2�a�–2�c� suggest that the behavior of both mod-
els is fundamentally the same and characteristic of a first-
order phase transition. However, the next three graphs dem-
onstrate qualitatively different predictions of the Gaussian
and the blob models.

For the Gaussian chain model, a transition from the con-
fined state to the escaped state is accompanied by a jump in
the average number of imprisoned monomers. At the transi-
tion point, one-half of the total number of monomers are
ejected outside to form a crown; see Fig. 2�d�. In contrast to
that, the blob model predicts a smooth change without a
jump. This directly affects the behavior of the average order
parameter: while in the Gaussian chain model there is a pro-
nounced jump, the blob model suggests that the order param-
eter does not change at all. The large constant value of S in
the blob model is due to the cigar-shaped conformation of
the chain in an imprisoned state which is identical to the
shape of the stem in the escaped state.

The behavior of the average end-to-end distance is also
qualitatively different for the two models. The plateau value
for the imprisoned Gaussian chain, R /N=N−1/2, is character-
istic of the ideal coil, while for the elongated cigar, this ratio
is N independent. The linear part of the curves corresponding
to the escaped state simply represents the dominant contri-
bution of the stem to the overall end-to-end distance, R�L,
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irrespective of the model. At very low values of L /N correc-
tions due to the crown size become large, as shown in Fig.
2�f�. The size of the Gaussian chain demonstrates a jump at
the transition point consistent with a strong conformation
change accompanying the first-order transition. In the blob
model, the chain size does not have any jump.

It is clear that the predictions of the blob model presented
in Fig. 2 contain some internal contradictions. On the one
hand, the picture of the two branches of the free energy
meeting at some angle suggests a first-order transition. The
jumps in the lateral and compression forces are a simple
consequence of that. On the other hand, nothing dramatic
happens to the chain conformation in the blob picture: the
change from a completely confined state to a state with a
small escaped tail is continuous, as evidenced in Figs. 2�e�
and 2�f�. The presence of a discontinuity in the slope of the
fraction of imprisoned monomers suggests that the transition
should be classified as second order.

A crucial question to ask is whether one can identify two
distinct separate states with a bimodal distribution of some
appropriate order parameter. This we address by employing a
Monte Carlo simulation of 2D self-avoiding chains undergo-
ing the escape transition.

V. MONTE CARLO SIMULATION

Single-polymer chains grafted in the middle of a strip of
length 2L and width H are described by SAWs of N steps on
a square lattice between two hard walls with distance H as
shown in Fig. 3. Monomers are supposed to sit on lattice
sites but they are forbidden to sit on the two walls; i.e.,
�−L�x�L ,y=0� and �−L�x�L ,y=H�. For our simula-
tions we employ PERM and PERM with k-step Markovian
anticipation as described in Refs. �21,22�. PERM is a biased
chain growth algorithm with population control. Polymer
chains are built like random walks by adding one monomer
at each step. Thus, it has the advantage of estimating the
partition sum and counting the imprisoned monomers di-
rectly.

We simulate 2D SAWs starting at the grafting point of the
strip of length L=800, 1600, 3200, and 6400. The width of
the strip is varied from H=5 to H=129. Depending on the
chosen sizes of L and H, the total chain length is varied from
2500 to 50 000 in order to cover the transition region.

A. Free energy

Let us first discuss the scaling behavior of the free energy.
The partition sum of a free SAW in infinite volume for N
→� scales as

Z0�N� = 	�
−NN
−1, �18�

with 	� being the critical fugacity per monomer and with

=43/32 being a universal exponent �18�. As chains are still
confined in a strip of width H, one should expect the scaling
laws of the excess free energy including the crossover from
the region of wide strips, RF�H �RF�N� is the Flory radius
with �=3/4 in d=2�, to the region of narrow strips, RF�H,
where chains are stretched. Since the length of the strip is
finite, here we are more interested in another expected
crossover behavior of the excess free energy from an
imprisoned and stretched chain state to an escaped state.
Therefore, we plot the excess free energy F�N ,L ,H�
=−ln�Z�N ,L ,H� /Z0�N�� against N3/4H−1 with the precise es-
timate of 	�=0.379 052 28 �23� in Fig. 4. The partition sum
Z�N ,L ,H� is the total number of possible configurations of
SAW of N steps partially confined in a strip of length 2L and
of width H, which is estimated directly in the simulation. In
Fig. 4, the sharp crossover behavior from the imprisoned
states to the escaped states is indeed seen as N increases for
a fixed value of H. The excess free energy of the escaped
chain is independent of N, as predicted in a blob picture by
Eqs. �13� and �15�. The best fit of the free energy for impris-
oned state is given by

Fimp�N,L,H� � 1.944�2�NH−4/3. �19�

It is in perfect agreement with the previous estimation in Ref.
�22�, where the fugacity per monomer scales as 	H−	�

�0.737H−4/3 and hence the free energy of the chains of size
N in the imprisoned state scales as Fimp� 0.737

	�
NH−4/3

�1.944NH−4/3. Values of the excess free energy of the es-
caped chain, Fesc�N ,L ,H� are determined by the horizontal
curves shown in Fig. 4. Results for L=800, 1600, 3200, and
6400 are shown in Fig. 5, where we obtain

L

H

x

y

FIG. 3. Schematic drawing of a polymer chain growing as a
self-avoiding walk inside a finite strip and grafted at �x=0,y=0�.
Monomers are allowed to sit on the lattice sites, except for the
lattice sites representing the walls �−L�x�L ,y=0� and �−L�x
�L ,y=H�. The first monomer is attached with a bond to the graft-
ing site marked by a cross. Lengths are measured in units of the
lattice spacing.
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FIG. 4. �a� Free energy relative to a free chain, F�N ,L ,H�
=−ln�Z�N ,L ,H� /Z0�N��, plotted against N3/4H−1 for L=6400 and
H=17, 33, 65, and 129. The dashed curve is Fimp�N ,L ,H�
=1.944NH−4/3 and gives the best fit of the data.
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Fesc�N,L,H� = 2.03�3�L/H . �20�

As H becomes comparable to L—i.e., L /H�O�10�—the
data points deviate slightly from a straight line, indicating
that there are further finite-size corrections for small L /H. In
order to compare with the theoretical prediction shown in
Fig. 2�a�, we plot F�N ,L ,H� /N against L /N for various val-
ues of L and H in Fig. 6. In the escaped regime, these straight
lines extrapolated to L /N=0 are indeed described by Eq.
�20� very well. With conventional Monte Carlo simulations it
is difficult to estimate the partition sum precisely. With
PERM we do have very precise estimates of Z�N ,L ,H�, and
therefore we can obtain the lateral and compression forces by
differentiating the estimated free energy, Eqs. �19� and �20�,
with respect to L and H, respectively.

B. Average characteristics of polymer chains

The most straightforward way to understand how the con-
formations of the polymer chains change as they undergo the
escape transition is to estimate the end-to-end distance 
x�. In
Fig. 7, we plot the end-to-end distance per monomer, 
x� /N,

versus L /N. As long as the polymer chains are imprisoned
the curves are horizontal—i.e., the degree of chain stretching
is constant—and 
x� increases linearly with N as shown in
Ref. �22�. As the width of the strip, H, decreases, the chains
are stretched more. As L /N decreases, we see that there is a
jump in each curve to another branch where 
x�=L This
means that the chain stretching is abruptly increased so that
the chain reaches the edge of the strip, indicating that the
transition to a partially escaped conformation is first-order
like. This is in contrast to the smooth behavior predicted by
the blob picture and shown in Fig. 2�f�.

A jumpwise change in the chain stretching suggests a
similar change in the average number of imprisoned mono-
mers, 
Nimp�. In Fig. 8, we plot the fraction of imprisoned
monomers, 
Nimp� /N, versus L /N for L=800. As long as the
chain is imprisoned, 
Nimp� /N=1. With the increase in the
number of monomers, N, each curve indeed develops a jump
and the jump becomes more pronounced for smaller H. For a
fixed L and N→�, 
Nimp� /N→0, in accordance with both
theoretical models.

In Fig. 9, we plot the average of the order parameter S
versus L /N. We see clear jumps between the two states. For
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FIG. 5. The log-log plot of the excess free energy of the escaped
chain, Fesc�N ,L ,H�, plotted against L /H for various values of L and
H. The dashed line is Fesc�N ,L ,H�=2.03L /H and gives the best fit
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a given value of H, the order parameter behaves as a step
function. The data seem to suggest that the magnitude of the
jump decreases with the size of the system, L. A detailed
analysis of the distributions of s will be presented in the next
section. We will see that the apparent decrease in the jump is
due to poor sampling of the escaped state.

C. Transition points

For our simulations the transition points can be deter-
mined by analyzing three quantities: �i� free energy, �ii� vari-
ance of the number of imprisoned monomers, Nimp, and �iii�
variance of the end-to-end distance x. Since at the transition
point the free energy of the imprisoned state is equal to the
free energy of the escaped state, Eqs. �19� and �20� give the
following relation between L, N, and H at the transition
point:

�N

L
�

tr
= 1.04�2�H1/3. �21�

This shows that a polymer chain of size N can be confined in
a strip by tuning the length L or the width H of the strip.

The abrupt change scenarios of 
x� /N and 
Nimp� /N
shown in Figs. 7 and 8 indicate a phase transition but it is
difficult to locate precisely the transition point.

It is clear that all chain configurations can be divided into
two subsets: imprisoned and escaped. Far from the transition
point, only one subset is important in defining the average
characteristics, but in the vicinity of the transition point both
subsets contribute, as shown in Fig. 10. The average 
Nimp�
can be rewritten as


Nimp� =

�
�C1�

NimpWN�C1� + �
�C2�

NimpWN�C2�

�
�C1�

WN�C1� + �
�C2�

WN�C2�

= 
Nimp�1 + 
Nimp�2, �22�

where C1�C2� denotes the imprisoned �escaped� configura-
tions, WN�C1��WN�C2�� are the total weights of the chain for
obtaining the configuration C1�C2�, and 
¯� denotes the

partial contributions due to the imprisoned configurations
�=1� or the escaped configuration �=2�. Similarly,


Nimp
2 � = 
Nimp

2 �1 + 
Nimp
2 �2. �23�

Finally, the variance of Nimp, �2�Nimp�= 
Nimp
2 �− 
Nimp�2 can

be expressed as follows:

�2�Nimp� = �1
2�Nimp� + �2

2�Nimp� − 2
Nimp�1
Nimp�2, �24�

where �1,2
2 �Nimp�= 
Nimp

2 �1,2− 
Nimp�1,2
2 . It is shown in the Ap-

pendix that the variances of partial contributions to the total
number of imprisoned monomers, �1

2�Nimp� and �2
2�Nimp�, are

much better suited for locating the transition point than the
full variance �2�Nimp� because of the very asymmetric be-
havior of the latter. We present �1

2�Nimp� /N and �2
2�Nimp� /N

as functions of L /N in Fig. 11 for various values of H and L.
It is clear that for a fixed width H, the peaks become sharper
as the length L of the strip increases. The escape transition
points are identified with the positions of the peaks of
�1

2�Nimp� and �2
2�Nimp� as determined by a curve fitting. Val-

ues of the transition points �L /N�tr,1 and �L /N�tr,2 are the
same to the third digit for fixed values of L and H, so the
transition point is taken as an average of them: i.e., �L /N�tr

= ��L /N�tr,1+ �L /N�tr,2� /2. The results of �L /N�tr obtained by
this method are listed in Table II and presented in Fig. 12. A
more detailed discussion is given in the Appendix. A similar
method was also used for determining the transition point
from the variance of the end-to-end distance x. The results
are also listed in Table II and presented in Fig. 12. All the
values of �N /L�tr are plotted in Fig. 12 against H1/3. The best
fit gives

�N

L
�

tr
= 1.025�35�H1/3, �25�

which is consistent with the estimation of Eq. �21� within the
error bar.
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VI. LANDAU THEORY: DISTRIBUTION OF THE ORDER
PARAMETER

A. Analytical theory

The approach based on the Landau free energy is per-
fectly suited for analyzing the relevant states in the escape
problem, including the metastable states. In the Landau
theory, all configurations are first subdivided into subsets as-
sociated with a given value of the order parameter s and
summation is performed separately within each subset. The
full partition function can be obtained then by integrating
over the order parameter:

Z = exp�− F� =� ds exp�− ��s�� , �26�

where ��s� is the Landau free energy function—i.e., the
nonequilibrium free energy taken as a function of the order
parameter. In the vicinity of the first-order transition point,
the Landau free energy is expected to have two minima �one
stable and the other metastable�. Our analysis will be based
on finding the metastable minima and the associated thermo-
dynamic characteristics. The proper choice of the order pa-
rameter is not always obvious; nor are there any standard
recipes for making it. One criterion is quite clear: the average
value of the order parameter should allow one to distinguish
between two phases. For a first-order transition, the average
order parameter changes jumpwise. We require that the prop-
erly chosen order parameter change continuously as the sys-
tem evolves from a metastable state, through the transition
state at the top of the barrier, and eventually fall into the
equilibrium minimum. We have shown earlier �13� that these
criteria are satisfied if the order parameter is defined as the
chain stretching in the confined coil state, s=r / �Na�, where r
is the instantaneous end-to-end distance of the chain of N
monomers, or as the stretching of the stem only in the flower
conformation, s=L / �na�, where n is the number of mono-
mers in the stem. In analogy to the Gaussian case, the Lan-
dau function consists of two branches that have to be intro-
duced separately. As the chain is in an imprisoned state, the
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FIG. 11. Variances of the number of imprisoned monomers di-
vided by N, �a� �1

2�Nimp� /N, for the imprisoned state, and �b�
�2

2�Nimp� /N, for the escaped state, plotted against L /N. The height
of peaks increases with L for a fixed value of H.

TABLE II. Values of the transition points �L /N�tr determined from the analysis of the variances �1
2�Nimp�

and �1
2�x� for the imprisoned states and from the variances �2

2�Nimp� and �2
2�x� for the escaped states.

H

�L /N�tr,Nimp
�L /N�tr,x

L=800 1600 3200 6400 L=800 1600 3200 6400

9 0.4790 0.4766 0.4703 0.4649 0.4790 0.4766 0.4723 0.4674

17 0.3831 0.3846 0.3810 0.3754 0.3829 0.3836 0.3810 0.3754

33 0.3027 0.3060 0.3071 0.3036 0.3024 0.3078 0.3070 0.3036

65 0.2363 0.2412 0.2434 0.2455 0.2357 0.2409 0.2433 0.2455

129 0.1816 0.1880 0.1916 0.1932 0.1803 0.1877 0.1914 0.1930
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FIG. 12. Transition points �N /L�tr versus H. The dashed line is
�N /L�tr=1.025�35�H1/3 and gives the best fit of the data.
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Landau free energy is directly expressed in terms of the dis-
tribution of the end-to-end distance. There exists no closed-
form formula for such a distribution of confined chains with
excluded volume interactions. However, the distribution of
the gyration radius for 3D chains confined in a tube was
studied analytically and numerically in �24�. It was proposed
that the free energy of a confined chain with a given gyration
radius rg can be presented as a sum of two terms:

F�rg� = N�Ac + B� rg

Na
�� , �27�

where c is the segment volume concentration expressed as a
function of the gyration radius and the confinement geom-
etry, and  and � are linked to the space dimension d and the
Flory exponent � by = ��d−1�−1 and �= �1−��−1. The first
term describes the concentration effects in the des Cloizeaux
�25� form, the second term is the Pincus �26� scaling form of
the stretching free energy, and A and B are model-dependent
numerical coefficients of order unity. Instead of rg, we use
the same ansatz, Eq. �27�, to describe the end-to-end distance
distribution by taking c=Na2 /rH, =2, and �=4. The free
energy of the chain in an imprisoned state as a function of s
is hence given by

�imp�s� = N�A� a

sH
�2

+ Bs4, s �
L

Na
. �28�

Since we prefer to keep the basic scaling formula of the
Landau free energy in order to provide predictions in a
simple analytical form, here we are not going to consider the
further logarithmic correction terms as shown in �24�.

In the thermodynamic limit, the average value of the order
parameter for the imprisoned state, Simp, is found by locating
the minimum of �imp�s�—i.e., d�imp�s� /ds=0 at
s=seq

imp—and hence

Simp = seq
imp = �A/2B�1/6�a/H�1/3. �29�

The minimum of the Landau free energy gives the free en-
ergy for the imprisoned state at equilibrium:

Fimp = �imp�Simp� = 3B� A

2B
�2/3� a

H
�4/3

N . �30�

Compared with Eq. �13�, this is indeed the correct scaling of
the free energy. The end-to-end distance at equilibrium is
found as

RN = NaSimp = �A/2B�1/6�H/a�−1/3Na , �31�

which is consistent with the result of the blob model, Eq.
�12�.

As the chain is in an escaped state, the formula of the free
energy function is identical to Eq. �28�, but corrected for the
fact that only the n monomers that are part of the stem con-
tribute:

�esc�s� = n�A� a

sH
�2

+ Bs4 =
L

a
�A� a

H
�2

s−3 + Bs3,

s �
L

Na
. �32�

The average value of the order parameter in the escaped
state, Sesc, is found by locating the minimum of �esc�s� and is
given by

Sesc = seq
imp = �A/B�1/6�a/H�1/3. �33�

Thus, the free energy of the escaped chain at equilibrium is

Fesc = �esc�Sesc� = 2�AB�1/2� L

H
� . �34�

The transition point is found from the condition that the two
minima of the Landau free energy function be of equal
depth. Using Eqs. �30� and �34� we get

� L

Na
�*

=
3

25/3�A

B
�1/6� a

H
�1/3

. �35�

It is interesting to calculate the size of jumps implied by
the Landau theory in the order parameter, the imprisoned
monomers, and the end-to-end distance at the transition. Us-
ing Eqs. �29� and �33� we immediately get the reduced jump
of the order parameter:

�S

Sesc
=

Sesc − Simp

Sesc
= 1 − 2−1/6 � 0.1091, �36�

which is independent of H and the coefficients A and B. For
an imprisoned state, 
Nimp�=N by definition, while for the
coexisting escaped state with the same choice of H, L, and N
we have only 
Nimp�=L /Sesc monomers. From Eqs. �33� and
�35�, we obtain the relative reduction in a number of impris-
oned monomers:

�Nimp

N
=

N − L/Sesc

N
= 1 −

3

25/3 � 0.055. �37�

This number has a simple meaning of the fraction of the
chain escaping out of the confinement at the transition point.
It is much smaller than 1/2 in the Gaussian chain model, but
nonzero in contrast to the blob model. Finally, the reduced
jump of the end-to-end distance is obtained by combining
Eqs. �31� and �35�:

�R

L
=

L − RN

L
= 1 −

23/2

3
� 0.0572. �38�

Equations �36�–�38� show that the sizes of jumps in S,

Nimp� /N, and RN /L are universal quantities. Results for the
average order parameter S and the average fraction of im-
prisoned monomers, 
Nimp� /N, predicted by the Landau
theory are shown in Fig. 13. Comparing with the numerical
results shown in Figs. 8 and 9, we see that the Landau theory
a good qualitative agreement.

The predicted free energy of the chain at equilibrium, Eqs.
�30� and �34�, follows the same scaling behavior as obtained
by the MC simulations shown in Eqs. �19� and �20�. This
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allows us to identify the numerical values of the constants A
and B for our model: A�1.057 and B�0.975.

B. Numerical comparisons

Here we focus on the results of the Landau free energy of
polymer chains partially confined in a strip of width H=28
and of length L=800, 1600, 3200, and 6400. Since PERM
gives the possibility to estimate directly the partition sum
and the properly normalized histograms, the Landau free en-
ergy as a function of s, ��N ,L ,H ,s�, is given by

��N,L,H,s� = − ln�P�N,L,H,s�
Z0�N�

� , �39�

where P�N ,L ,H ,s�=�walks�s,s� is the histogram of s and the
partition sum of the partially confined chains can be written
as

Z�N,L,H� = �
s

P�N,L,H,s� �40�

in accordance with Eq. �26�. In Fig. 14, we plot four sets of
results of the Landau free energy per monomer
��N ,L ,H ,s� /N versus the order parameter s for L=800,
1600, 3200, and 6400. Since the transition point is near H1/3,
the histograms are obtained for N /L=3.05, 3.10, and 3.15 for
each set. The predicted analytical results of �P�s�=�imp�s�
for the imprisoned state and �P�s�=�esc�s� for the escaped
state, given by Eqs. �28� and �32�, are also shown for com-
parison. On the left-hand side of the branch points, due to the
finite-size effect, we see that the excess free energy for the
imprisoned state �the minimum of the curve� at s=seq,L

imp con-
verges to the predicted value �the minimum of the curve
�P�s�� of polymer chains confined in an infinite strip at s
=seq

imp slowly as L increases but seq,L
imp is slightly larger than

seq
imp as L→�. The difference between those curves corre-

sponding to the different ratio N /L is almost invisible for a
fixed value of L as predicted by Eq. �28�. On the right-hand

side of the branch points, we see that only those curves for
L=800 finally develop a parabolalike behavior with fluctua-
tions and they are more concave than those curves predicted
by Eq. �32�. It shows that PERM has difficulties in sampling
configurations in the escaped regime as L increases and gives
an explanation why we should not trust the size of those
jumps that appear in Fig. 9 too much. However, one can
easily overlook the existence of two minima in such a deli-
cate situation. With PERM, at least we are able to give evi-
dence for this two-minimum picture of the first-order like
transition. We also see that additional finite-size correction
terms should be taken into account for the theoretical predic-
tions in Eqs. �28� and �32�.

Taking the results for L=6400 as a reference, we plot the
same data but shift all other curves by some constants, c0,L
=−0.002 35, −0.001 09, and −0.000 44 for L=800, 1600, and
3200 to make the three branch points for N /L=3.05, 3.10,
and 3.15 coincide with each other in Fig. 15. According to
the prediction by Eq. �28�, we should expect that the four

2
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N /Nimpr

(3a/2 )(A/B) (H/a) L/N

S/Sesc
eq

5/3 1/6 −1/3

1
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(3a/2 )(A/B) (H/a) L/N5/3 1/6 −1/3
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FIG. 13. Based on the Landau theory, the theoretical predictions
of the average values of �a� the fraction of imprisoned monomers,
Nimp/N, and �b� the order parameter S are plotted against L /N. The
chain is in an imprisoned state for L /N� �3a /25/3�
��A /B�1/6�a /H�1/3 and in an escaped state for L /N� �3a /25/3�
��A /B�1/6�a /H�1/3.
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curves for different values of L overlap with each other in the
imprisoned regime. In fact, it is not the case but the differ-
ence between these curves decreases as L increases, and fi-
nally they will converge to one curve as L becomes very
large. In the escaped regime, surprisingly, we see that those
curves corresponding to different L all overlap with each
other for a fixed ratio of N /L as predicted by Eq. �32�. Al-
though the lack of data for larger L precludes very strong
conclusions, we may assume that these curves all show the
same behavior as the curve for L=800 and do further analy-
sis.

In order to determine the transition point and extract an
accurate value for the jump in the order parameter from
simulations, we use two parabolic functions gimp�s� and
gesc�s� to fit the numerical data in the imprisoned and es-
caped regimes, respectively:

gimp�s� = a1,L�s − seq,L
imp �2 + c1,L �41�

and

gesc�s� = a2�s − seq,L
esc �2 + c2 + b2

N

L
, �42�

where a1,L, c1,L, a2, c2, b2, seq,L
imp , and seq,L

esc are determined by
curve fitting and results are shown in Table III and Fig. 15.
From the condition of equal depth of minima,

gimp�s = seq,L
imp � = gesc�s = seq,L

esc � , �43�

we obtain the transition points �N /L�tr=3.13�2�, 3.10�2�,
3.09�1�, and 3.08�1� for L=800, 1600, 3200, and 6400, re-
spectively, which are in perfect agreement with the results
given by the free energy, Eq. �21�, and the results given by
the variance of the end-to-end distance and the imprisoned
monomers, Eq. �25�.

The values for the reduced jump of the order parameter,

�S

Sesc
=

seq,L
esc − seq,L

imp

seq,L
esc , �44�

obtained by the curve fitting are plotted in Fig 16 against L−1

together with the direct estimates in the simulations and the
prediction by the analytical theory, Eq. �36�. We see that
�S /Sesc decreases as L increases. As L→�, it remains finite
and the value is slightly larger than the predicted value by
the analytical theory. However, in view of the numerical un-
certainties of our curve fitting we consider that the predic-
tions of the analytical theory and the results by the MC simu-
lations agree with each other quite well.

VII. SUMMARY AND DISCUSSION

In this paper we attack the problem of the 2D escape
transition by combining several approaches. We first com-
pare two simple pictures of the transition predicted for
Gaussian chains and by a blob model. This comparison is
useful from a general pedagogical point of view since the
two models are in a sense complimentary: each captures
some essential features of the phenomenon while failing in
some other aspects. Both models are attractive because of
their clarity and, although mathematically simple, lead to
nontrivial results including finite-size effects in a phase tran-
sition. The third approach that was proposed in this paper
attempts at incorporating excluded-volume effects in the
framework of the Landau theory. We were not able to present
an exact theory since it would require a detailed understand-
ing of the end-to-end distribution of confined self-avoiding
chains. To the best of our knowledge this problem is still not
well explored. The simulations presented allowed us to
evaluate the transition condition, Eq. �21�, which represents
the binodal line in the �H ,L /N� plane. It is of interest to
extend the simulations in order to locate the spinodal lines
where one of the states loses stability and to construct the
full phase diagram. It is also possible to explore the proper-
ties of metastable states and their lifetimes controlled by the
barrier heights. It is clear from the results on the distribution
of the order parameter, Fig. 14, that the PERM algorithm
experiences difficulties with sampling the configurations be-
longing to the escaped state, especially for long chains. The
escaped branch of the distribution is cut off quite sharply,
which means that the important set of configurations charac-
terized by a larger stretching degree in the stem is vastly

TABLE III. Results of the coefficients a1,L, c1,L, a2, c2, b2, seq,L
imp , and seq,L

esc for the curve fitting in Fig.
15.

L a1,L c1,L seq,L
imp a2 c2 b2 seq,L

esc

800 0.6281 0.02277 0.2945 0.6518 0.0497 −0.0086 0.3510

1600 0.6336 0.02303 0.2986

3200 0.6675 0.02313 0.3007

6400 0.6872 0.02320 0.3017
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FIG. 16. The reduced jump of the order parameter �S /Sesc plot-
ted against L−1.
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underrepresented. This is a generic problem that one encoun-
ters when dealing with first-order transitions when the prop-
erties of the phases differ significantly. In our case, the
PERM algorithm based on the chain growth technique is
perfectly tuned to generate homogeneous configurations of
imprisoned chains but fails with strongly inhomogeneous es-
caped configurations. It is worth noting that a naive determi-
nation of the jumps in the average order parameter would
have lead one to a wrong conclusion that the jump disap-
pears in the thermodynamic limit. Again, we expect this to
be a generic problem when simulating weak first-order tran-
sitions. The most reliable analysis of the nature of the tran-
sition would require a detailed examination of the order pa-
rameter distribution.
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APPENDIX

In this appendix, we discuss the finite-size behavior in the
fluctuations in the number of imprisoned monomers, Nimp, in
more detail. Following the technique of finite-size scaling
analysis for first-order transitions as described in �27�, we
write down the probability distribution of the fraction of im-
prisoned monomers, m=Nimp/N, in the two-state model:

P�m� = ��m − m1�
e�t−ttr�a

e�t−ttr�a + e−�t−ttr�a

+
1

�2��0

e−�m − m2�2/2�0
2 e−�t−ttr�a

e�t−ttr�a + e−�t−ttr�a
. �A1�

The first term accounts for the imprisoned state with m
strictly equal to m1=1, while the second term describes the
distribution of m in the escaped state in the Gaussian ap-
proximation with the equilibrium average of m equal to m2
and dispersion �0; t is the control parameter, ttr is its critical
value at the transition point, and P�m� is normalized,

� P�m�dm = 1. �A2�

At the transition point t= ttr,

P�m� =
1

2���m − m1� +
1

�2��0

e−�m − m2�2/2�0
2 , �A3�

which obeys the “equal-weight rule,” while for t� ttr the
relative weight of the two states is exp�2�t− ttr�a�. The con-
stant a−1 describes the range of t over which the transition is
smeared out. For the Gaussian approximation to be meaning-
ful the dispersion of m in the escaped state, �0, must be small
compared to the difference �m=m1−m2. Taking t=L /N and
using Eqs. �30�, �32�, and �34� of the Landau theory, one

expects the following scaling: a−1�H2/3 /L and �0
2�H /L.

Since the probability density is a sum of two contribu-
tions, P�m�= P1�m�+ P2�m�, the kth moment of m is defined
by


mk� =� mkP�m�dm = 
mk�1 + 
mk�2, �A4�

where 
mk�1,2=�mkP1,2�m�dm. Therefore, the first and sec-
ond moments are given by


m� = m1p1 + m2p2 �A5�

and


m2� = m1
2p1 + �m2

2 + �0
2�p2; �A6�

here, p1=e�t−ttr�a /2 cosh��t− ttr�a� is the relative weight of the
imprisoned state and p2=1− p1 is the relative weight of the
escaped state.

Instead of a �-function singularity at t= ttr, the variance of
the fraction of imprisoned monomers in a finite system be-
comes


m2� − 
m�2 = p1p2��m�2 + p2�0
2, �A7�

which shows a smooth asymmetric peak close to t= ttr of
approximate height �m2+�0

2. Here �m is the relative reduc-
tion in the number of imprisoned monomers at the transition
point, for which the analytical Landau theory predicts a
value of 0.055; see Eq. �37�. The first term in Eq. �A7� is
symmetric with respect to the transition point since p1p2
=1/ �4 cosh2��t− ttr�a��. The second term, however, is asym-
metric, as it describes the intrinsic fluctuations in the escaped
state. The resultant asymmetry is clearly seen in Fig. 17. We
conclude that the full variance of m is ill suited for a precise
determination of the transition point.

The situation is quite different if we analyze the variances
calculated with the partial probability densities P1�m� and
P2�m� restricted to the imprisoned �escaped� configurations.
In the simulations, the product N�1,2

2 was calculated. The
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FIG. 17. The square root of the variance �1�m� for the impris-
oned states, �2�m� for the escaped chains, 1− 
m�, ��m� of the chain
in either an imprisoned or escaped state, and the difference ��
=�1�m�−�2�m� against L /N.
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variance due to the imprisoned configurations only �with
m1=1� gives a perfectly symmetric curve as a function of the
control parameter:

N�1
2�m� = Nm1

2p1p2 =
N2

4 cosh2��t − ttr�a�
, �A8�

with the peak value of Ntr /4�LH1/3 /4. The numerical data
presented in Fig. 18 support this prediction with very high
accuracy. The variance due to escaped configurations is
somewhat modified by the intrinsic fluctuations in the es-
caped state,

N�2
2�m� = N�m2

2p1p2 + p2�0
2� � Nm2

2p1p2 =
N�1 − �m�2

4 cosh2��t − ttr�a�
,

�A9�

but in contrast to Eq. �A7�, the asymmetric term is always
negligible. Indeed, the coefficient with the symmetric term,

m2
2= �1−�m�2, is close to 1 while both quantities ��m�2 and

�0
2 are quite small. In Fig. 17, we plot the full dispersion

��m� �the square root of the full variance�, which includes
contributions from all configurations, and partial dispersions
�1�m� and �2�m� due to imprisoned and escaped configura-
tions separately, the difference ��=�1�m�−�2�m�, as well as
the average fraction of escaped monomers, 1− 
m�, as func-
tions of L /N. It is clear that the full curve is strongly asym-
metric in contrast to partial dispersion curves, in good agree-
ment with the theoretical description above. On the other
hand, the curve of �� shows the same behavior as the curve
of ��m� near the transition point, and the heights of these
two peaks correspond to the half size of the jump �m=m1

TABLE IV. Results of the coefficients a1,H, b1,H, a2,H, c2,H, and
d2,H for the curve fitting in Figs. 19 and 20.

H a1,H b1,H a2,H c2,H d2,H

9 0.8221 0.7841 0.9940 0.2131 2.2802

17 0.6845 −2.0403 0.9845 0.0961 0.4540

33 0.5600 −2.3531 0.9725 0.0430 0.0570

65 0.4301 −1.3774 0.9545 0.0173 0.0095

129 0.3185 −0.7332 0.9220 0.0070 0.0017
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FIG. 18. Variance due to the imprisoned configuration multi-
plied by N, N�1

2�m�, plotted against L /N for L=3200 and H=17.
The solid curve is the best fit of Eq. �A8�, Nm1

2 /4 cosh2��t− ttr�a�,
with the height of the peak A1�L ,H�=N�m1�2 /4�2099.74, the full
width at half maximum �FWHM� �imp�L ,H��1.7627/a=0.0035,
and the position of the peak ttr,1= �L /N�tr,1=0.3810. The FWHM are
given by the distance between points on the curve shown at which
the corresponding height reaches half height of the peaks �half
maximum�.
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FIG. 19. FWHM ��L ,H� for the imprisoned state �=1� and
for the escaped state �=2� against L−1. The dashed curves are
a1,H�H /L�+b1,H�H /L�2 and give the best fit of the data. Values of
a1,H and b1,H are listed in Table IV.
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FIG. 20. Inverse of the height of the peaks for the imprisoned
state, �a� A1

−1�L ,H�, and the escaped state, �b� A2
−1�L ,H�, plotted

against L−1. The dashed curves are �a� a2,H�4H−1/3 /L� and �b�
c2,H�H /L�+d2,H�H /L�2, and give the best fit of the data. Values of
a2,H, c2,H, and d2,H are listed in Table IV.

WHAT IS THE ORDER OF THE TWO-DIMENSIONAL… PHYSICAL REVIEW E 76, 021108 �2007�

021108-13



−m2=�Nimp/N. By fitting the partial variances N�1
2�m� and

N�2
2�m� as functions of L /N according to Eqs. �A8� and

�A9�, respectively, we obtain the FWHM ��L ,H�
=2 arccosh��2� /a, the height of the peak A�L ,H�=Nm

2 /4,
and the transition point ttr,= �L /N�tr, for =1 �imprisoned
configurations� and =2 �escaped configurations�.

One example of the curve fitting for L=3200 and H=17 is
shown in Fig. 18. Note that the peak height and the transition

point are related to the theoretical prediction A1�L ,H�
�LH1/3 /4 with very high accuracy. The results of ��L ,H�,
A�L ,H� for =1 and for =2, and ttr, are shown in Figs.
19, 20, and 12. In Fig. 19, we see that the full widths
��L ,H� for =1 and for =2 are overlapped with each
other, and �→0 as 1/L→0 by fitting the data using
a1,H�H /L�+b1,H�H /L�2. In Fig. 20, the inverse of the height
A1

−1�L ,H�→0 as 1/L→0 by fitting the data using
a1,H�4H−1/3 /L� and c1,H�H /L�+d1,H�H /L�2. Since �→0
and A

−1→0 as 1/L→0—i.e., a � function—a sharp phase
transition occurs in the thermodynamic limit. It is a strong
indication �27� that the transition is first-order like. Values of
the coefficients a1,H, b1,H, a2,H, c2,H, and d2,H are listed in
Table IV.

The relative reduction in the number of imprisoned mono-
mers,

�m = m1 − m2 = 2�A1
1/2 − A2

1/2�/N1/2. �A10�

The results of �m for various values of H and L plotted
against H /L are shown in Fig. 21. We see that there exist
systematic errors at small H /L. Finally we obtain �m
�0.058 at H /L→0 by a curve fitting, which is slightly
larger than the prediction, Eq. �37�.
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FIG. 21. The relative reduction in the number of imprisoned
monomers, �m, plotted against H /L.
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